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Eigenmobilities in background electrolytes for capillary zone
electrophoresis

I. System eigenpeaks and resonance in systems with strong
electrolytes
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Abstract

A background electrolyte system for capillary zone electrophoresis which is composed of three strong univalent ionic
constituents is investigated. The ion 1 is considered as a counter-ion and two ions, 2 and 3, are considered as co-ions in
relation to the analyte ion 4. We investigate the linearized model of electromigration in such a system and calculate the
eigenvalues of a corresponding matrix. The model is formulated in such a way that the eigenvalues of the system are certain
mobilities, which we call eigenmobilites, which characterize specific features of the electrophoretic migration. One of the
eigenmobilities is the system eigenmobility u causing the rise of the system peak, called here the system eigenpeak. AS

situation when the analyte has the same mobility as the system eigenmobility, u 5 u , is analyzed in detail. We show that it4 S

leads to the resonance—the mutual jump in the concentration profile of both co-ions, 2 and 3, has a shape of the spatial
derivation of the originally sampled analyte profile and, moreover, it grows linearly with time. After a sufficiently long time
it can be ‘‘amplified’’ to any value. The resonance has then a great impact on signals of indirect detection methods, like
indirect UV detection or conductivity detection. In the framework of the linearized model the relative velocity slope S , aX

measure of electromigration dispersion, is expressed as S 5 F(u 1 u )(u 2 u )(u 2 u ) / [u (u 2 u )], where u is theX 1 4 2 4 3 4 4 S 4 i

mobility of the ith ion and F is the Faraday constant. As in practice the concentration of the analyte is not infinitely small
and has a certain finite value, the analyte will be at the resonance severely dispersed to a much broader spatial interval. When
a specific detector is used, the signal of such an analyte can apparently be missed without any notice.  2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction Coulombic forces the ions are forced to maintain a
macroscopic electroneutrality, which means that in a

An important aspect of the movement of various sufficiently large volume of electrolyte the positive
ions in the electrolyte solution is that the movement and negative charge of all ions is balanced. This is
cannot be regarded as independent. Due to strong why the movement of every ion is dependent on the

presence of other ions.
All considerations trying to describe the electro-*Corresponding author. Tel.: 1420-2-2195-2437; fax: 1420-2-

migration movement of ionic constituents in the2491-9752.
ˇE-mail address: gas@natur.cuni.cz (B. Gas). electric field have to start from the continuity
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equations (which are in fact the mass conservation peak gradually moves across the position of the
laws) and Gulberg–Waag equations relating the system eigenpeak. Poppe later showed [3] by means
species being in the acid–base equilibria. A complete of numerical simulations that when during electro-
description of a general situation in terms of such migration a solute mobility is close to that of the
equations can easily be formulated [1]. What is much system eigenpeak, elements of the corresponding
more difficult is solving the equations and revealing eigenvector become very large. This is manifested in
all the features of such general systems. Therefore, to reality as an unusually large response of the indirect
analytically solve the equations there has to be detection signal.
adopted a series of simplifications omitting some Such ‘‘amplification’’ phenomena were also
aspects of the system but still enabling one to noticed by other authors. The system peaks in
distinguish the features of interest. electrophoresis were observed by Beckers, who

With a specific capillary electrophoresis ex- studied BGEs with two co-ions [8]. He found that a
perimental setup, the equations can be linearized and system peak has a mobility between the mobility of
solved analytically. The constituents forming a back- the two co-ions. He also noticed that the analyte ion
ground electrolyte (BGE) are axially almost uni- in the vicinity of the system peak ‘‘interacts’’ with
formly distributed along the column in concentra- the system peak and both the sample and system
tions C . On the other hand, analyte constituents are peaks are enlarged and dispersed due to this inter-i

injected as a sample into a certain position in the action.
column in a small concentration. It means that the The system peaks in systems with multiple co-ions

ˇconcentrations of the analyte constituents are almost were further studied by Gebauer and Bocek [9],
zero in all axial coordinates and only at a certain Desiderio et al. [10], and Macka et al. [11]. The
coordinate they attain a certain value, which is much authors used the concept of vacancy electrophoresis
smaller than C . Under such conditions linearization for their explanation, in analogy to previously de-i

of continuity equations can be easily done while the scribed vacancy chromatography. The system peaks
solution of the linearized problem can still give and response in indirect UV detection were described
important information about the behavior of the in papers by Lu and Westerlund [12] and Bullock et
system in practice. al. [13].

It was predominantly Poppe and co-workers [2– The above authors also noticed the phenomena
6], who analyzed the linearized model of electro- taking place when the velocity of an analyte peak is
migration. Moreover, they were able to explain very close or matches the velocity of the system
various features of the system either as a property of peak. First, they pointed out that a response of
the linearized system or as a result of the intrinsic indirect detection at the site of the analyte has a
nonlinearity [3]. When solving the linearized model tendency to reach both, highly positive and highly
there arises an eigenvalue problem for a matrix. negative values and attains a characteristic zigzag
They predicted that electrophoretic systems having N shape. Second, the analyte undergoes unusually high
constituents generate N ‘‘eigenpeaks’’ in cases where dispersive forces causing its extensive spatial disper-
the concentration of hydroxonium or hydroxide ions sion.
is small relating to the concentration of the other At this point it has to be stressed that electro-
constituents. They also pointed out that the eigen- migration dispersion, i.e., a kind of deformation and
peaks have to be regarded especially in electro- broadening of the analyte peak, is a consequence of
phoretic systems with indirect detection, where a the nonlinear nature of electromigration and cannot
constituent forming the background electrolyte is to act in the linearized model. It can only take place for
be traced. a finite analyte concentration, when the analyte

Poppe [2] also discussed an interesting phenom- constituent substantially influences the conductivity
enon, noticed earlier in chromatographic transport by at the site where it is present. There can, however, be
Crommen et al. [7] in connection with indirect found a quantity that is regarded as a tendency to
detection: the response in indirect detection tends to undergo electromigration dispersion, when the con-
reach 6infinity, when the retention of an analyte centration of the analyte starts to grow from ‘‘limit-



960 (2002) 187–198 189ˇ ˇ ´M. Stedry et al. / J. Chromatogr. A

ing zero’’. Gebauer and co-workers [14,15] and simple system composed of three ions of BGE and
ˇ´Horka and Slais [16] previously introduced such a possibly one ion of an analyte. The ion 1 is regarded

quantity called the relative velocity slope, which as the counter-ion, and two ions, 2 and 3, are
characterizes electromigration dispersion of an ana- regarded as co-ions of the analyte ion 4. The
lyte in a given BGE. The relative velocity slope S is respective concentrations of these ions are denotedX

defined as: by c , c , c , and c . All the ions will be called the1 2 3 4

constituents of the system. Such a system is able todvk X
] ]]S 5 ? (1) demonstrate all the important features mentioned inS DX v dc c →0X X X the Introduction. We consider all ions as strong and

where k is the conductivity in the zone of the univalent with the ionic mobility u . If we denote thei
4analyte, c and v are the concentration and electro- conductivity k 5 Fo z u c , where F stands foru uX X i51 i i i

phoretic velocity, respectively, of the analyte con- the Faraday constant and relative charges of ions are
stituent X in the zone of the analyte. As the relative z 521 and z 5z 5z 51, the governing equation1 2 3 4

invelocity slope S is defined as a limit for infinitely and initial conditions c (x) for ith ion, i51, 2, 3, 4,X i

small analyte concentration, we will show how it can are:
be analytically evaluated in the framework of the

≠c c≠i ilinearized model. ] ] ]5 2 j sgn(z )u ? ? ,S Di i≠t ≠x kIn the present article we continue in the way
inc (x, 0) 5 c (x) (2)initiated by Poppe [2,3]. We consider the linearized i i

model of electromigration and try to search for an
analytical solution whenever we can. We will define Here x is the axial coordinate of the column, t is
a new term—the eigenmobility of the electrolyte the time, j is the current density. If the cross-section
system, which helps to understand the behavior of of the column is constant along its length, the current
the system. Our aim is to reveal and explain all density j is also constant along the x-axis. We will
features of the solution that are interesting both for suppose that it is also constant in time, which can be
theoreticians and practical analysts. This will con- easily achieved by an electronic circuitry. Further,
cern especially those aspects of capillary zone elec- the system has following approximating assump-
trophoresis connected with indirect types of detection tions: the diffusion movement of ions caused by the
like photometric detection or conductivity detection. gradient of chemical potential is neglected, ionic

We restrict all considerations to electrophoretic mobilities are constants, no thermal or sorption
systems with exclusively strong electrolytes due to effects play a role, the radial distribution of all
their relative simplicity as the equation for acid–base constituents in the column is uniform, there is no
equilibria are not essential. Such systems, however, bulk flow like the electroosmotic flow of the elec-
will be still able to reveal the behavior leading to trolyte.
occurrence of system eigenpeaks and their ‘‘inter- A specific capillary zone electrophoresis setup
action’’ or ‘‘resonance’’ with analytes. In the next brings us to the study of such functions c , each ofi

article we will consider more complicated systems which remains close constant values C . Since thei

with weak electrolytes, where concentrations of ion 4 is the analyte, it is natural to have C 50. This4

hydroxonium or hydroxide ions are significant in leads to the introduction of new (perturbation)
˜ ˜relation to other background constituents. variables c by c (x, t) 5 c (x, t) 2 C and their initiali i i i

in in˜(t50) values c (x) 5 c (x) 2 C .i i i

Now we transform the set of governing Eq. (2) to
˜ ˜ ˜ ˜2. Theory the system with variables c , c , c , c which — for1 2 3 4

simplicity — will be presented in the matrix form.
2.1. Derivation of governing equations This gives the whole problem a compact form, which

needs only formal changes, when coming to a system
Rather than taking into account the general case of with any number of constituents. For our case of four

n strong electrolytes, we shall investigate a very constituents we shall use the notation:
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3 4 where the matrix M(0, 0, 0, 0), which for brevity
˜ ˜ ˜ ˜ ˜K 5Ou C and k(c , c , c , c ) 5Ou c will be shortened to M(0), has the form:i i 1 2 3 4 i i

i51 i51

M(0)
and the matrix M of type 434 whose element at

2 u (K 2 u C ) u u C u u C u u C1 1 1 2 1 1 3 1 1 4 1 1place (i, m) is:
2 u u C u (K 2 u C ) 2 u u C 2 u u C1 1 2 2 2 2 2 3 2 2 4 2 2

]5
K 2 u u C 2 u u C u (K 2 u C ) 2 u u Cz Ku 1 3 3 2 3 3 3 3 3 4 3 31 2i m m ˜]]]M 5 ? d (K 1 k) 2 u (C 1 c )f g 0 0 0 u Kim 2 i i i i 4(K 1 k)

The matrix M(0) has four eigenvalues:mwhere d is the Kronecker symbol. Every element ofi

˜ ˜ ˜the matrix M depends on small quantities c , c , c ,1 2 3 l 5 l 5 01 2
˜ ˜ ˜ ˜ ˜c , which is underlined by writing M(c , c , c , c ).4 1 2 3 4 u u C 1 u u C 1 u u C2 3 1 1 3 2 1 2 3˜ ]]]]]]]]The system of equations for c is: l 5 ; u (6)i 3 Su C 1 u C 1 u C1 1 2 2 3 3

≠ l 5 uT 4 4˜ ˜ ˜ ˜](c , c , c , c )1 2 3 4≠t
which all have the dimension of mobility and will bej ≠ T˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜] ]5 2 M(c , c , c , c ) (c , c , c , c ) (3) called the eigenmobilities of the system. We will1 2 3 4 1 2 3 4FK ≠x
show later that u is the mobility of a certain featureS

where T denotes transpose matrix, here applied to of the system—the system eigenpeak.
row vectors it gives column vectors. The initial It is shown in Appendix A that Eq. (5) will be
conditions are: fairly simplified by the introduction of new depen-

dent variables w , w , w , w , which are some linearin 1 3 3 4˜ ˜c (x, 0) 5 c (x), i 5 1, 2, 3, 4 (4)i i ˜ ˜ ˜ ˜combinations of the original variables c , c , c , c .1 2 3 4

In the matrix notation:
Since the electroneutrality of the BGE and initial

T T˜ ˜ ˜ ˜(w , w , w , w ) 5V(c , c , c , c ) (7)perturbations is supposed, i.e.: 1 2 3 4 1 2 3 4

21in in in in˜ ˜ ˜ ˜ where V is a suitable regular matrix (the inverse VC 5 C 1 C , c 5 c 1 c 1 c1 2 3 1 2 3 4

exists). Thus we can easily return from new variables
˜ ˜ ˜ ˜it is easy to get c (x, t) 5 c (x, t) 1 c (x, t) 1 c (x, t) ˜w to original ones c when this relation is multiplied1 2 3 4 i i

21also for all positive t for which the solution exists. from the left side by the inverse matrix V .
in˜For an initial value of c (x) we take a small4

localized function (here by ‘‘localized’’ we mean a
2.2. System A—Electrophoretic system withfunction which is different from zero only on a small
analyte mobility u different from the eigenmobility4interval of x, i.e., on the site of injection).
uSLinearization—a general approach that under

some conditions enables us to get simple approxi-
We start with the case l ± l , i.e., u ± u , in3 4 4 Smations to solution of nonlinear problems by treating

which only zero is a double eigenvalue. We canthem as linear ones—is in the case of this system
multiply Eq. (5) from the left by matrix V ofA˜carried by the idea that all c during time develop-i Appendix A and get the following very simplement do not go far away from zero values. We cancel
system in the variables w , w , w , w :1 2 3 4all terms in the equations where at least two such

small terms are multiplied, doing this we are left ≠w ≠w 4ju ≠w1 2 S 1
]] ]] ]] ]]with the system: ; 0, 5 2 ? ,
≠t ≠t FK ≠x

≠ ≠w ju ≠w ≠w ju ≠wT 3 S 3 4 4 3˜ ˜ ˜ ˜](c , c , c , c ) ]] ] ]] ]] ] ]]1 2 3 4 5 2 ? , 5 2 ? (8)≠t ≠t FK ≠x ≠t FK ≠x
j ≠ T˜ ˜ ˜ ˜] ]5 2 M(0, 0, 0, 0) (c , c , c , c ) (5) with the initial conditions:1 2 3 4FK ≠x
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4 4 2.3. System B—Electrophoretic system without
in in in in in˜ ˜w ; 0, w 5Ox c , w 5Oy c , analyte 41 2 i i 3 i i

i51 i51

in in˜w 5 c (9) We check the case where there is no analyte in the4 4

BGE system consisting of three components. The
Solving this system, we find that: linearized system of equations is:

inw (x, t) ; 0, w (x, t) 5 w (x), ≠ j ≠1 2 2 T T˜ ˜ ˜ ˜ ˜ ˜] ] ](c , c , c ) 5 2 M (0) (c , c , c ) (13)1 2 3 3 1 2 3≠t FK ≠xjuSinS ] Dw (x, t) 5 w x 2 ? t ,3 3 FK where the matrix M (0) is of the form:3

ju4in 2u (K2u C ) u u C u u CS ] Dw (x, t) 5 w x 2 ? t (10) 1 1 1 2 1 1 3 1 14 4 1FK
2u u C u (K2u C ) 2u u C]M (0)5 1 2 2 2 2 2 3 2 23 K1 2
2u u C 2u u C u (K2u C )Using the second row of the matrix V we 1 3 3 2 3 3 3 3 3A

immediately find that:
This matrix has three eigenvalues:

˜ ˜ ˜ ˜c c c c1 2 3 4 l 5 l 5 0, l 5 u (14)] ] ] ] 1 2 3 Sw 5 4 1 1 1 ? u (11)S D2 Su u u u1 2 3 4
which are exactly the same as the first three of the

Functions w and w are travelling waves which3 4 preceding matrix M(0). To simplify the system, the
propagate along the x-axis with the velocity ju /S matrix V of Appendix A is applied.B(FK) and ju /(FK), respectively. According to the4

21structure of V (see Appendix A) we even find that:A 2.4. System C—Electrophoretic system with
analyte mobility u equal to the eigenmobility uju 4 S4in˜ ˜ S ] Dw (x, t) 5 c (x, t) 5 c x 2 ? t4 4 4 FK

In this part we shall solve linearized Eq. (5) with
This shows that—in the linear approximation—the initial conditions Eq. (4) in the case of the additional

analyte moves with the velocity, which does not bear double eigenvalue: l 5 l , i.e., u 5 u .3 4 4 S
any dependence on the analyte concentration and Since the matrix M(0) has now two pairs of
thus provides the velocity limit for the ‘‘zero’’ multiple eigenvalues, the matrix V of Appendix AC
analyte concentration. must be used. We come to the following system of

˜We now give a formula for dk /dc which is later equations for w :4 i
used in deriving a value of S from Eq. (1). SinceX ≠w ≠w 4u j ≠w1 2 S 1u ± u , the velocities of the waves represented by ]] ]] ]] ]]4 S ; 0, 5 2 ? ,

≠t ≠t FK ≠xw , w , w are different from each other and after2 3 4
≠w u j ≠w3 S 3some time w representing the analyte is not in-4 ]] ] ]]5 2 ? ,
≠t FK ≠x˜ ˜ ˜fluenced by either w or w . Then c , c , and c are2 3 1 2 3

˜ ≠w ≠w ≠wjfunctions of only c and calculating them at the side 4 4 34 ]] ] ]] ]]S D5 2 u 1 m (15)S 2of the analyte only the elements of the fourth column ≠t FK ≠x ≠x
21of the matrix V are used. In Appendix A these areA with the initial conditions:

˜ ˜denoted by g , thus c 5 g c , i51, 2, 3, all under thei i i 4
4˜assumption that c are very small. Thus: in in in in ini ˜ ˜w ; 0, w 5Ox c , w 5 c ,1 2 i i 3 4

4 3 i51˜dcdk i
4] ]5 FOu 5 F Ou g 1 uS Di i i 4˜ ˜dc dc in ini51 i514 4 ˜w 5Oy c (16)4 i i

i51and some manipulations provide the formula:
Having a small and localized analyte 4 in mind,

(u 1 u )(u 2 u )(u 2 u )dk 1 4 2 4 3 4 we choose a small and smooth function w and set] ]]]]]]]]lim 5 2 F (12)
in˜ (u 2 u )u˜ dcc →01 ˜S 4 44 4 c 5 w. To obey the condition of electroneutrality, it4
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˜is possible to start with the following simple form of c (x, t) of the linearized problem Eq. (5) are certaini

the initial conditions: linear combinations of functions w (x, t) which arei

given in Eq. (10) and are able to show features of thein in in in˜ ˜ ˜ ˜c 5 w, c 5 c ; 0, c 5 w (17)1 2 3 4 solution in a lucid way. Here we will discuss their
physical meaning.

Solving this system, we find that: The function w corresponds with the electro-1

neutrality condition. From the first row of the matrixw (x, t) ; 0,1
˜ ˜ ˜ ˜V it is obvious, that w 5 2 c 1 c 1 c 1 c . OfA 1 1 2 3 4w (x, t) 5 (x 1 x )w(x),2 1 4 course, we have then w (x, t) ; 0.1

ju According to Eq. (11), the function w has a veryS 2S ] Dw (x, t) 5 w x 2 ? t ,3 FK tight connection with the well known Kohlrausch
regulating function, since:juSS ] Dw (x, t) 5 ( y 1 y )w x 2 ? t4 1 4 FK 3 ˜ ˜ ˜ ˜w C c c c c C C2 i 1 2 3 4 1 2jm ju ] ] ] ] ] ] ] ]1O 5 1 1 1 1 12 S 4u u u u u u u u] S ] D2 ? tw9 x 2 ? t (18) S i 1 2 3 4 1 2i51FK FK

C c c c c3 1 2 3 4
] ] ] ] ]where w9 denotes the derivative of the function w. 1 5 1 1 1 (19)u u u u u3 1 2 3 4The presence of the variable t in the last term of

w means that, as long as the linear approximation is Since:4

valid, the amplitude of w grows linearly with time.4 ≠w 4ju ≠w2 S 1
]] ]] ]]5 2 ? ; 0
≠t FK ≠x

in3. Discussion the w (x, t) 5 w (x) is a function which is indepen-2 2

dent of time. It reveals that there is something like a
In spite of its seeming simplicity, the background ‘‘capillary memory’’: some features of the concen-

electrolyte system with exclusively strong elec- tration profiles ‘‘stay’’ at the same positions where
trolytes, having one counter-ion 1 of the opposite they are at the beginning regardless of the pass of the
charge and two co-ions, 2 and 3, of the same charge electric current transporting all ions.
in relation to the analyte 4, reveals many features In the most common capillary electrophoresis
that are important in electrophoretic practice. setup a separation column is filled by axially uniform

We have formulated the problem in such a way concentration of all ions of the BGE and the analyte
that the eigenvalues of a matrix corresponding to the is sampled at a certain ‘‘localized’’ site of injection.
linearized system are certain mobilities, which we The injection will generally cause a perturbation in
call eigenmobilites, and which characterize specific the originally uniform background electrolyte profile
features of the electrophoretic migration. The num- leading to a change in the w . Such a perturbation is2
ber of eigenmobilities is the same as the number of called the ‘‘water gap’’ or ‘‘water peak’’. Its name
constituents of the system. comes from the fact that it can also be generated by

the injection of water or diluted (or more concen-
3.1. System A—Electrophoretic system with trated) background electrolyte. Due to the feature of
analyte mobility u different from the eigenmobility the w function the perturbation—the water peak4 2

u does not move and stays at the position of injectionS

as its eigenmobility equals zero. If, possibly, there is
This particular setup with four ions (three ions a bulk flow of the electrolyte in the column, which is

compose the BGE, the fourth ion is the analyte) has raised by the electroosmotic flow or by the laminar
four eigenmobilites, which are given in Eq. (6). Two Poisseulle flow (which are of course different phe-
of them equal zero, the third one is the system nomena not governed by the presented equations),
eigenmobility u and the fourth one equals the ionic the water peak can serve for indication of theirS

mobility u of the analyte. The analytical solutions velocity when passing a detector site.4
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inThe third solution is w (x, t) 5 w (x 2 ju t /FK) phoretic velocity v of the analyte depends on its3 3 S 4

˜and belongs to the eigenmobility l ; u . It reveals own concentration c . Such dependence can be3 S 4

that there is an additional feature in the solution, hardly found by application of the presented linear
which moves with the mobility of u . As con- model. What we, however, can calculate, is a slopeS

centration of the counter-ion equals the sum of of such dependence for infinitely small concentration
concentration of both co-ions, C 5C 1C , it can of the analyte. This quantity, which is called the1 2 3

also be written: relative velocity slope [16,17]:

u C (u 1 u ) 1 u C (u 1 u )3 2 1 2 2 3 1 3 dvk 4]]]]]]]]]u 5 (20)S ] ]S 5 lim ?C (u 1 u ) 1 C (u 1 u ) X2 1 2 3 1 3 v ˜˜ dcc →01 44 4

If the injection of the analyte will cause a per-
was introduced to characterize a tendency of theturbation in the w function, the perturbation is3 sample to undergo the electromigration dispersion.moved along the x-axis with the mobility of u in theS Since the analyte velocity v is given by v 5 ju /k,4 4 4same direction as both co-ions. Generally, u ± u2 3 it follows after a simple computation that:and C .0 and C .0, otherwise it is not a system2 3

with double co-ions. Without a loss of generality we dvk dk4
] ] ]? 5 2 (21)suppose that u . u , the eigenmobility u is then in2 3 S v ˜ ˜dc dc4 4 4the interval u . u . u . The perturbation moving2 S 3

with mobility of u is sometimes called the systemS From this and from Eq. (12), the relative velocity
peak. Unfortunately, the term system peak is vague slope S is in our model:X
and has been so far used for designating various
phenomena. We therefore propose to call such type (u 1 u )(u 2 u )(u 2 u )1 4 2 4 3 4

]]]]]]]]S 5 F (22)of the peak as the system eigenpeak. X (u 2 u )uS 4 4
Unlike the water peak, the system eigenpeak

moving with the eigenmobility u is invoked by a It is obvious that when the mobility u of theS 4
perturbation in w function, which is zero before analyte peak is close to the eigenmobility of the3

sampling. As noted in the Appendix, the initial value system eigenpeak, u , the relative velocity slope hasSin˜of function w ; 0, when three initial functions c , a tendency to reach 6infinity. It consequently means3 1
in in˜ ˜c , c satisfy: that the analyte will undergo the electromigration2 3

dispersion to an infinitely large extent.in in in˜ ˜ ˜c (x) c (x) c (x)1 2 3 Fig. 1 shows an example of a dependence of S onX]] ]] ]]5 5C C C the sample mobility u to get an impression about its1 2 3 4

shape. This is a hypothetical electrophoretic system,
in all coordinates x. It means that the system

where the counter-ion 1 is in concentration C 5101eigenpeak cannot be generated by the injection of
mM and both co-ions 2 and 3 are in concentrations

water or a diluted (or more concentrated) background
C 5C 55 mM. Their ionic mobilities are u 530?2 3 1electrolyte. To rise the system eigenpeak, the in- 29 2 21 21 29 2 21 2110 m V s , u 580?10 m V s , u 52 3jected electrolyte must contain a different ratio of 29 2 21 2140?10 m V s and the Faraday constant F5both co-ions than is in the original background 2196487 C mol . The system eigenmobility u isSelectrolyte. Of course, in practice the system eigen- 29 2 21 21according to Eq. (6) u 555.56?10 m V s .Speak is the most often generated by the introduction

˜The quantity lim dk /dc is in fact the molar4of a sample containing analyte constituents, which, c̃ →014

in general, causes a perturbation in w function. conductivity detection response b , which is a3 X
in˜The fourth function w (x, t) 5 c (x 2 ju t /FK) measure of the sensitivity of conductivity detection4 4 4

belonging to the eigenmobility l 5 u simply tells [18]. According to Eq. (21) it has the same value but4 4

that the analyte peak having infinitely small con- opposite sign as the relative velocity slope, S 5X

centration is moved along x-axis by its own mobility 2 b . This is valid for the systems with strongX

u . A very interesting question is, how the electro- electrolytes, as is the case in the consideration. We4
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3.3. System C—Electrophoretic system with
analyte mobility u equal to the eigenmobility u4 S

Here we shall discuss a situation when the analyte
has the same mobility as the mobility of the system
eigenpeak, u 5 u . This case, when two nonzero4 S

eigenmobilities of the system are the same, l 5 l ,3 4

is the general situation, called the resonance in
mechanical or electrical systems, where the fre-
quency of the forcing term equals the frequency of
free oscillations. We are therefore tempted to call this
case the resonance, too. Such a situation can happen
in practice by chance but quite often, especially in
cases of complex samples. After the injection of the
analyte its movement coincides with the movement
of the system eigenpeak, so they are constantly ‘‘in
touch’’. The analytical solution is given by functions
w , see Eq. (18).i

The first three eigenvalues l , l , l and func-1 2 3Fig. 1. Dependence of S on sample mobility u according to Eq.X 4
29 2 21 21 tions w , w , w are the same as in previous systems(22). Ionic mobility of counter-ion, u 530?10 m V s . 1 2 31

29 2 21 21 29 2Mobility of co-ions, u 580?10 m V s , u 540?10 m A and B. This is obvious as the maximum con-2 3
21 21 29 2 21 21V s . The system eigenmobility u 555.56?10 m V s ,S centration of the analyte 4 even in the small localized

according to Eq. (6). area—the injection site—is supposed to be very
small. We denote such initial axial distribution of the
analyte as w(x). We can have in mind w(x) like a
profile which reminds a Gaussian peak, the width of

will show in the next paper that weak electrolytes which is much less than the total length of the
behave differently and that it can be found BGE column. The second term on the right-hand side in
systems where analytes undergo very low electro- the formula for w :4

migration dispersion, S → 0, and still are able toX juSS ] Dgive a good conductivity signal, b ± 0. w (x, t) 5 ( y 1 y )w x 2 ? tX 4 1 4 FK
jm ju2 S
] S ] D2 ? tw9 x 2 ? tFK FK3.2. System B—Electrophoretic system without

analyte 4 reveals that there is an additional type of feature
moving with the mobility u 5 u . It has a shape ofS 4

It is worth noting the fact that both the water peak the spatial derivation w9 of the original analyte
and system eigenpeak can be invoked also in the profile w(x) and, moreover, as it is multiplied by t, it
background electrolyte with double co-ions even grows linearly with time. After sufficiently long time
without presence of any analyte injected, as such a the amplitude of w can be ‘‘amplified’’ to any value4

system has the eigenmobilities responsible for them, (in the framework of the linearized model). It is
l 5 0 and l 5 u (see Eq. (14)). As was discussed important to realize that the grow in w is reflected2 3 S 4

in the previous part, to arise the water peak the by the amplification of the ‘‘mutual jump’’ in the
diluted (more concentrated) background electrolyte concentration profile of both co-ions, 2 and 3. On the
must be injected, while for arising the system other hand, the axial concentration profile of the
eigenpeak the injected electrolyte must contain a sample, w , is not affected by the amplification3

different ratio of both co-ions than is in the original phenomenon and still has a shape of the original
background electrolyte. peak w(x) moving with the mobility of u :S
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29 2 21 21i.e., 30, 80 and 40?10 m V s , respectively.juSS ] Dw (x, t) 5 w x 2 ? t The mobility u of the analyte 4 is here the same as3 4FK 29 2the system eigenmobility, u 5 u 5 55.56?10 m4 S
21 21 22All these aspects are demonstrated in Fig. 2. It V s and the current density j5500 A m . Fig.

shows results of the simulation program, which was 2 shows the output of the Simul program [20]—
described elsewhere [19,20] and which is able to distributions of concentrations of both co-ions, c2

solve numerically the system of continuity equations, and c , and of the analyte, c , at various times. (The3 4

Eq. (2). The hypothetical electrolyte system is the Simul program had to be adapted to compute Eq. (2)
same as used in Fig. 1—the column is uniformly which are without diffusion terms). As the original
filled with solution of counter-ion 1 in concentration perturbation w had a Gaussian shape, the moving
C 510 mM and both co-ions 2 and 3 in con- features appearing in concentrations of co-ions have1

centrations C 5C 55 mM. The analyte is intro- a shape of its derivative, the amplitude of which2 3

duced at a position Injsite50.002 m as a small increases during its movement. This is a result
2Gaussian peak, w(x) 5 c exp 2 (x 2 Injsite) / straightly explaining why in indirect detection thef4max

2(2s ) , with concentration at the maximum of peak signal attains the zigzag shape under such situations,g
2 28 2c 50.002 mM and variance s 54?10 m . The as noticed previously (see e.g., Ref. [8]). It also4max

mobilities u , u and u are the same as in Fig. 1, elucidates the amplification phenomenon earlier1 2 3

simulated numerically by Poppe [3], who calculated
that elements of the corresponding eigenvector be-
come very large.

The coincidence of the system eigenmobility and
the mobility of the analyte, u 5 u , can have an4 S

additional aspect in electrophoretic practice. As
derived in Eq. (22) and shown in Fig. 1, the relative
velocity slope has a tendency to reach 6infinity in
such a case. The presented model is based on the
assumption of no diffusion and a very small con-
centration of the analyte compared to the concen-
tration of BGE. Nevertheless, in practice the maxi-
mum concentration of the analyte is not infinitely
small. Under such conditions the velocities of the
analyte at points with a higher concentration will be
significantly different from the velocity at points
where the concentration is small. If there were no
diffusion, the crest of the peak would override the
parts of the peak where the concentration is low,
which would result in a physically unrealizable
situation. This case cannot occur in reality as the
diffusion is always present and leads to a strong
dispersion of the peak to a much broader spatial
interval.

The maximum analyte concentration will be de-
creasing. The phenomenon is called schizophrenic
[14] or anomalous [21] dispersion. If a specific
detector is used, i.e., the detector recognizing the
analyte presence directly, the signal of such anFig. 2. Computed axial distributions of concentrations of the
analyte can apparently be missing without any noticeco-ions c (dashed curve), c (dotted curve) and of the analyte c2 3 4

(solid curve) at various time t. For other conditions see text. due to its severe spatial dispersion [17]. In spite of
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4. Nomenclature

Appendix A
x, t Axial coordinate of the col-

umn, time
We explain how the eigenvalue and eigenvectors

F, j Faraday constant, current
arise when solving Eq. (5). Here a system of four

density
equations is dealt with, the procedure is quite the

u , v , z Mobility, velocity and rela-i i i same in a general case of n variables. For any left
tive charge of ith ion

(i.e., row) eigenvector v 5 (j , j , j , j ) of the1 2 3 4c (x, t) Concentration of ith ioni matrix M(0) which corresponds to an eigenvalue l,
inc (x) 5 c (x, 0) Initial condition for t50 i.e., vM(0) 5 lv, we multiply the ith equation of thei i

C Constant for which system (5) by j , then sum up for i 5 1, 2, 3, 4, toi i
4 ˜c (x, t) 2 C is small get for a function:w(x, t) 5 o j c (x, t) an equationi i i51 i i

c̃ (x, t) 5 c (x, t) 2 C Perturbation of concentration ≠w /≠t 5 2 ( jl /FK) ? (≠w /≠x). The initial conditioni i i
in inof ith ion for this function is w(x, 0) 5 w (x), where w (x) 5

in 4 in˜ ˜ ˜c (x) 5 c (x, 0) Initial condition for t50 o j c (x), and thus one immediately gets:i i i51 i i

C 5 C 1 C 1 C1 2 3 jlink Conductivity ]S Dw(x, t) 5 w x 2 ? tFKS Relative velocity slopeX

a travelling wave which propagates with the velocity3 4˜ ˜ ˜ ˜ ˜K 5 o u C , k(c , c , c , c ) 5 o u ci51 i i 1 2 3 4 i51 i i jl /(FK).
˜ ˜ ˜ ˜ If there are four eigenvectors v , v , v , v , which,M, M(c , c , c , c ) Matrix of elements M 1 2 3 41 2 3 4 im

respectively, correspond to the eigenvalues l , l ,l Eigenmobilities, i.e., eigen- 1 2i

l , l of the matrix M(0), we get four new functionsvalues of M(0) ; M(0, 0, 0, 3 4

w (x, t), w (x, t), w (x, t), w (x, t), of which each0) 1 2 3 4

satisfies a simple equation of the above type and theu ; l Eigenmobility characterizingS 3

appropriate initial condition. In matrix notation, if Vthe movement of the eigen-
is a matrix whose rows are the left eigenvectors v ,peak i

21 then the new functions and their initial conditionsV,V ,V ,V ; V Transformation matrices; in-A B C

are:verse of transformation ma-
trix T T˜ ˜ ˜ ˜(w , w , w , w ) 5V (c , c , c , c ) ,1 2 3 4 1 2 3 4˜w Variables to which c arei i in in in in T in in in in T˜ ˜ ˜ ˜(w , w , w , w ) 5V(c , c , c , c )transformed using matrices V, 1 2 3 4 1 2 3 4

V , V , VA B C As above, the functions w are given by:ix , y Elements of matrices V , V ,i i A B
jlV iinC S ] Dw (x, t) 5 w x 2 ? ti i FKa , b , g Elements of the inverse ma-i i i

trix VA If, as a last assumption, V is a nonsingular matrix,
m Constants in a vector relationi ˜the functions c can be recovered with the help of theiinvolving eigenvalues l and 21i inverse matrix V through the matrix relation:

eigenvectors
in in T 21 T˜ ˜ ˜ ˜ ˜ ˜w 5 c 5 c Initial condition for analyte (c , c , c , c ) 5V (w , w , w , w )1 4 1 2 3 4 1 2 3 4
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21 21If the matrix V exists, then VM(0)V is a (x , x , x , x )M(0) 5 l (x , x , x , x )1 2 3 4 2 1 2 3 4

diagonal matrix with eigenvalues l , l , l , l on1 2 3 4 1 m (21, 1, 1, 1)1the diagonal. A simple sufficient condition for this is
that every two eigenvalues of M(0) are different, i.e., where m 5 4u [on the right hand side, due to1 S
there are no multiple eigenvalues. l 5 0, there is only a m multiple of the preceding2 1

Unfortunately, for M(0) we have l 5 l 5 0. All eigenvector (21, 1, 1, 1)].1 2

other eigenvalues are different from zero, but further When we use the sum of all constant concen-
multiple eigenvalues may appear—as in System C. trations C 5 C 1 C 1 C , a vector ( y , y , y , y )1 2 3 1 2 3 4
Generally, it is possible to find a matrix V such that is the left eigenvector corresponding to l 5 u , i.e.,3 S

21VM(0)V is a Jordan matrix—a matrix which is not
( y , y , y , y )M(0) 5 l ( y , y , y , y )1 2 3 4 3 1 2 3 4far from a diagonal one. This Jordan matrix has

eigenvalues on the diagonal and all other elements if we set:
are zero with a possible exception of elements

1 1 Cstanding just under the diagonal. It is the Jordan
] ] ]y 5 2 u ? ,S D1 Sform of a matrix we shall use. u u C3 2 1

If l 5 l 5 l , a double eigenvalue, we proceedi i11 1 1 C
] ] ]as follows. An eigenvector v is found for l, i.e., y 5 2 1 u ? ,S Di 2 Su u C1 3 2v M(0) 5 lv . If, for this eigenvalue l, it is noti i

1 1 Cpossible to find another eigenvector v linearlyi11 ] ] ]y 5 1 u ? ,S D3 Su u Cindependent of v , one must accept as v a vector 1 2 3i i11

satisfying a relation v M(0) 5 lv 1 mv ini11 i11 i y 54
which m is a suitable constant. The presence of such

(u 1u )(u 1u )(u 2u )u u C1 2 1 3 2 3 4 Svectors v in the matrix V leads to the abovei11 ]]]]]]]]]]]]]]
u u u [(u u 2u u )C 1(u u 2u u )C 1(u u 2u u )C ]1 2 3 2 3 1 4 1 1 3 2 4 2 1 2 3 4 3mentioned nonzero off-diagonal terms in the Jordan

matrix.
It is easy to see that the denominator of the last

relation y equals zero only if u 5 u .4 4 S

Finally, the fourth vector (0, 0, 0, 1) is the left
A.1. System A

eigenvector corresponding to the eigenvalue l , i.e.,4

(0, 0, 0, 1)M(0)5l (0, 0, 0, 1). Now, we are able to4We start by describing the construction of the
define a dimensionless matrix:

dimensionless matrix V in the case u ± u . As theA 4 S

left eigenvector corresponding to l 5 0 it is possible 2 1 1 1 11
x x x x1 2 3 4to take (21, 1, 1, 1), i.e., (21, 1, 1, 1)M(0)5l (21,1 V 5A y y y y1 2 3 41, 1, 1). (On the right side, due to l 5 0, there is a 1 21
0 0 0 1null vector). If we define:

which reduces Eq. (5) with initial conditions Eq. (4)
3 1 1 1 to system (8) and initial conditions (9) for functions] ] ] ]x 5 1 1 1 u ,S D1 Su u u u1 2 3 4 w .i

211 3 1 1 The inverse matrix V has the form:A] ] ] ]x 5 1 2 2 u ,S D2 Su u u u1 2 3 4
* a b g1 1 11 1 3 1

] ] ] ]x 5 2 1 2 u ,S D * a b g3 S 21 2 2 2u u u u1 2 3 4 V 5A * a b g3 3 31 1 1 3 1 2
] ] ] ]x 5 2 2 1 uS D4 S 0 0 0 1u u u u1 2 3 4

where the elements in places of * are of no impor-
the vector (x , x , x , x ) satisfies tance for us, since w ; 0, and a , b , and g can be1 2 3 4 1 i i i
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expressed through u and C which we omit to ( y , y , y , y )M(0) 5 l ( y , y , y , y )i i 1 2 3 4 4 1 2 3 4

present here. 1 m (0, 0, 0, 1)2
is satisfied with an appropriate constant m . This2

may be achieved by taking:A.2. System B

1 1 C
] ] ]In the case of three variables c , c , c , the matrix y 5 2 u ? ,S D1 2 3 1 Su u C3 2 1V can be given the form:B

1 1 C
] ] ]y 5 2 1 u ? ,S D2 S2 1 1 1 u u C1 3 2x x xV 5 1 2 3B S D 1 1 Cy y y1 2 3 ] ] ]y 5 1 u ? ,S D3 Su u C1 2 3

where:
y 5 0,4

2 1 1 1 1 1 1 1 1] ] ]x 5 1 1 u ,S D1 S ] ] ] ] ] ]m 5 1 1 2u u u S DS DS D21 2 3 u u u u u u1 2 1 3 3 2
1 2 1
] ] ] u u u u u Cx 5 1 2 u ,S D 1 2 3 4 S2 Su u u ]]]]31 2 3 K
1 1 2
] ] ]x 5 2 1 uS D3 Su u u References1 2 3
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